

TAPER: Technology Advancing Phobos Exploration & Return

E&A

Inspiration

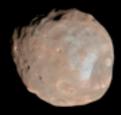
"He who receives an idea from me, receives instruction himself without lessening mine; as he who lights his taper at mine, receives light without darkening me." -Thomas Jefferson

Presentation Roadmap

1. Execution & Administration (Chris Nie)

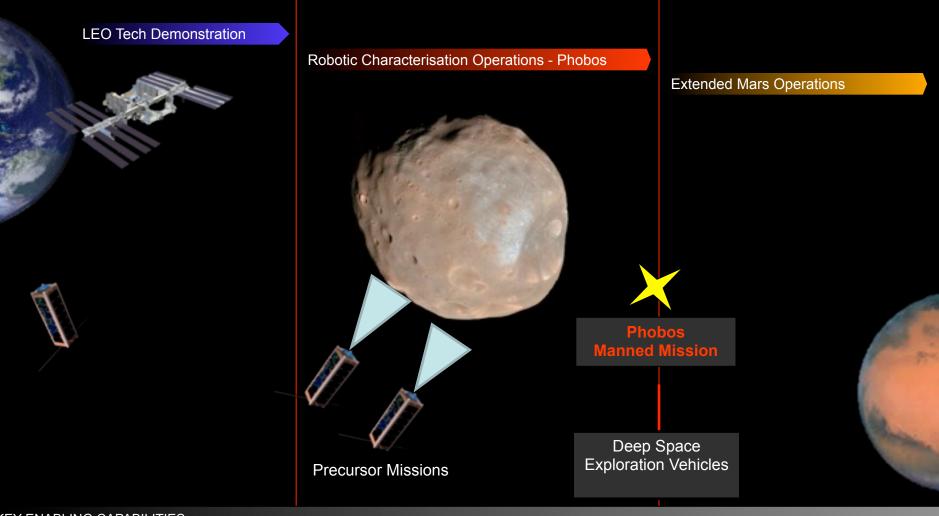
E&A

- 2. Science (Abigail Fraeman)
- 3. Engineering
 - 1.Mission Profile, Launch Dates, and Trajectory (Natasha Bosanac)
 - 2.Spacecraft Design & Layout (Frans Ebersohn)3.Propulsion Systems & Launch Capability Requirements (Frans Ebersohn)
- 4. Human Factors (Stefanie Gonzalez)
- 5. Conclusion (Nick Sweet)



TAPER - The Road Map to Mars

Technology Advcancing Phobos Exploration and Return (TAPER) is a concept program that aims to bridge the policy, technology, and science gaps for manned exploration of Mars by sending a crew to a Martian moon.


Phobos

KEY ENABLING CAPABILITIES

- Satellite size decrease and capability increase
- Heavy lift launch vehicles
- Composite propellant tanks
- Zero boil-off technology

- High resolution topography, gravitational field, radiation, thermal, mineralogical and chemical composition mapping of Phobos.
- Examine the geotechnical and mechanical properties of the regolith.
- Examine the dust and regolith content.
- Search for subsurface ice/ volatile products

- Mars Surface ISRU
- Mars Sample Return
- Manned Mars Exploration

Mission Overview

Mission Statement

The mission of TAPER 1 is to send an **international crew of four to Phobos** and return them safely with **surface samples** to serve as **precursor** to the human exploration of Mars.

Objectives

- Demonstrate the **ability** to **send humans to the martian system** and return them safely with samples of the environment;
- Assess the **feasibility** of **Phobos** as **resources** for future missions to the martian surface;
- Investigate the origin and evolution of the moons to better understand the martian system;
- Understand the **current environment of Phobos** in the context of the martian system to **support** architecture for **future manned Mars missions**.
- Establish infrastructure on Phobos to support future manned exploration of both Phobos and Mars.

Mission Timelines

Opposition Class Mission

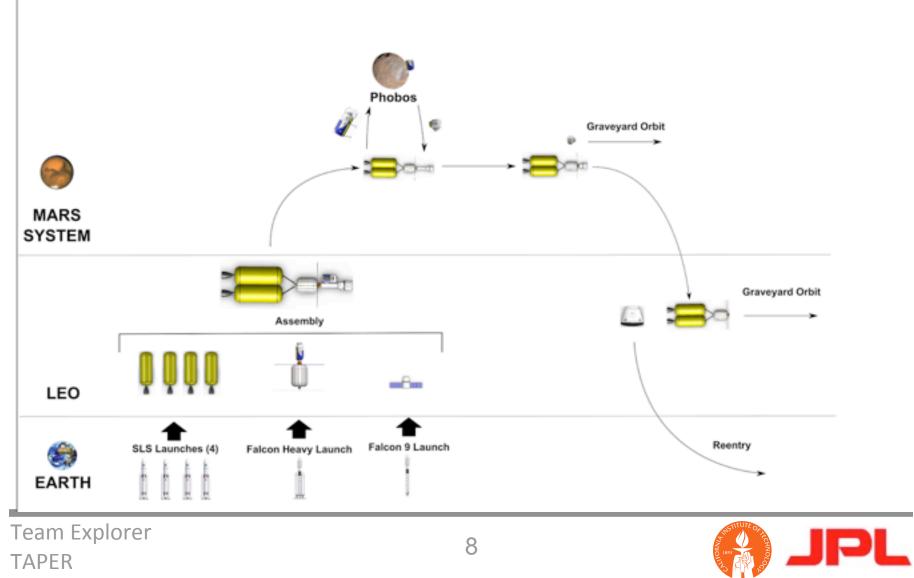
E&A

LEO Technology Demonstration using the International Space Station : January 2015

Nominal Precursor Mission: October 2024 - July 2026

Contingent Precursor Mission: August 2026 - May 2028

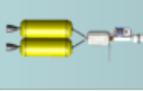
Nominal TAPER Mission: March 2033 - July 2034


Contingent TAPER Mission: August 2035 - October 2036

Introduction E&A Science

Engineering Conclusion

Mission Architecture



Mission Phasing

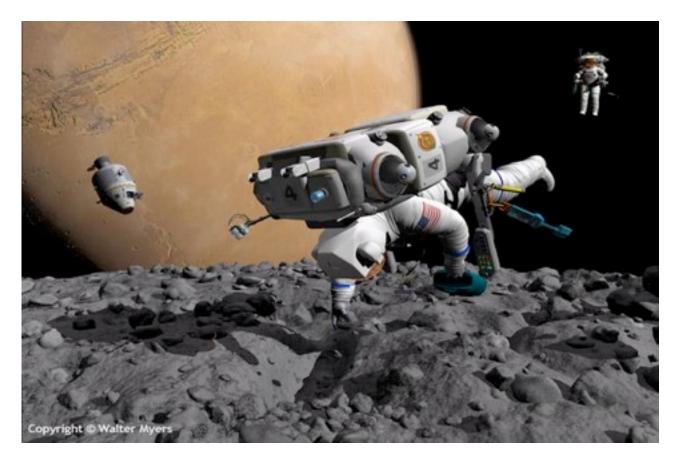
E&A

Phase I: Phase II: Cargo Launch LEO Assembly Approx: T+0 to T+2 T-30 to T-1

- Phase III: Phobos Transit T+3 to T+183
- Phase IV: Phobos Vicinity T+184 to T+207
- Phase V: Earth Return T+208 to T+441

- Phase I:
 - Launch and transit of cargo to Low Earth Orbit (LEO)
- Phase II:
 - LEO Assembly of transit stage
- Phase III:
 - Interplanetary transfer to Mars vicinity
 - Experimentation

Phase IV:


- Martian and Phobos orbit injection
- PSE undock and landing on Phobos
- Surface operations (detailed later)
- Phase V:
 - Interplanetary transfer to Earth vicinity
 - Sample down select
 - Experimentation

Science

Science

E&A

Engineering

Conclusion

Why Phobos?

Team Explorer TAPER

Strategic Knowledge Gaps

- 1. Map the global topography of Phobos.
- 2. Measure the gravitational field in the local vicinity of Phobos.
- 3. Assess the radiation properties in the local vicinity of Phobos.
- 4. Map and assess the mechanical properties of the regolith on Phobos.
- 5. Examine the mechanical and electrostatic properties of the dust and regolith on the surface of Phobos.
- 6. Search for subsurface ice and other volatile products.
- 7. Map the thermal environment of Phobos.
- 8. Map the global mineralogical and chemical composition of Phobos.

Can be addressed by NASA Discovery class mission(s)

Science Objectives for Surface Operations

- 1. Investigate the origin and evolution of the moons to better understand the Martian system
 - Identify diverse suite of rocks and regolith to be collected and returned for detailed laboratory investigation
 - Determine composition in situ of rocks and regolith from diverse and well characterized locations
 - Constrain internal structure of Phobos
 - Characterize Phobos regolith and processes that may have modified it over time

Science Objectives for Surface Operations

1. Investigate the origin and evolution of the moons to better understand the Martian system

2. Assess availability of in situ resources for possible future use in manned Mars missions

- Determine is the volatile content of the moon's surface and subsurface
- Detect and quantify any mineable material including magnesium, methane, ammonia, clays, REE

Science Objectives for Surface Operations

1. Investigate the origin and evolution of the moons to better understand the Martian system

2. Assess availability of in situ resources for possible future use in manned Mars missions

3. Understand the current environment of Phobos in the context of the Martian system to support architecture for future manned Mars missions

- Characterize effects of space weathering on the Phobos' regolith
- Understand how radiation is attenuated and blocked on the surface over time
- Quantify amount of dust fall and frequency of micrometeorite impacts on Phobos

Science

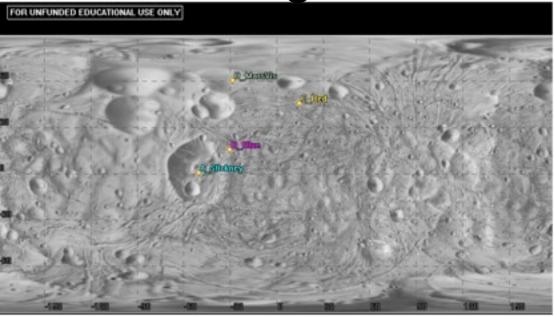
E&A

Engineering

Conclusion

Science Traceability Matrix

Science Related Mission Objectives	Measurement Objectives	Measurement Requirements	Instrument Requirements
Investigate the origin and evolution of the moons to better understand the	Identify diverse suite of rocks and regolith to be collected and returned for detailed laboratory investigation	Rock and soil samples must be collected from at least two locations on Phobos (red and blue units), preferrably three	Returned samples to be analyzed by techniques on Earth including XRD, isoptoic/age dating analyses, etc.
Martian system	Determine composition in situ of rocks and regolith from diverse and well characterized locations	Rock and soil samples must be investigated from at least two locations on Phobos (red and blue units), preferrably three	Raman/LIBS, Visible/Near infrared spectrometer measurements; Multispectral camera to identify spectrally unique areas and provide context
	Constrain internal structure of Phobos	Seismic measurements locations across Phobos	Deployable Seismometers
	Characterize Phobos regolith and processes that may have modified it over time	In situ science to characterize grain size/distribution/ roundness; investigation of returned core samples	Hand lense, corer and scoop to bring back regolith samples
Assess availability of in situ resources for possible future use in manned Mars missions	Determine is the volatile content of the moon's surface and subsurface	Measure regolith water content in situ, collect sample cores from any areas indentified by precursor as potential for having subsurface water	Raman/LIBS, VNIR spectrometer, Neutron spectrometer, drill for areas identified by precursor mission as potential for subsurface ice; deep drill if indicated necessary by precursor science
	Detect and quantify any mineable material including magnesium, methane, ammonia, clays, REE	Understand composition of surface	Raman/LIBS, APXS, Visible/Near infrared spectrometer measurements
Understand the current environment	Characterize effects of space weathering on the Phobos' regolith	Collect core samples from at least three locations on each of two sites	Returned samples: XRD, isoptoic and age dating analysis, GCMS, etc.
of Phobos in the context of the Martian system to support	Understand how radiation is attenuated and blocked on the surface over time	Measure fluxes and energies of particles received at Phobos surface	Plasma wave detector; energetic particle detector for high and low energy particles
architecture for future manned Mars missions	Quantify amount of dust fall and frequency of micrometeorite impacts on Phobos	Measure dust fall on Phobos	Dust detector



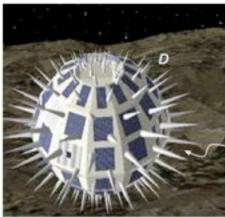
Introduction E&A

Science

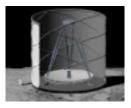
Engineering Conclusion

Landing Sites

Site Identifier	Site Location	Coordinates	Distance from previous site [km]
A	Stickney crater	50 deg W, 0 deg N	0
В	Blue spectral unit	30 deg W, 15 deg N	6
С	Red spectral unit	15 deg E, 45 deg N	11
D	Mars Visible	28 deg W, 60 deg N	9

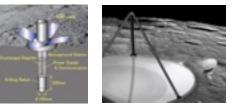


Introduction E&A Science Engineering Conclusion


Science Payload: In Situ Science

Sample collection equipment

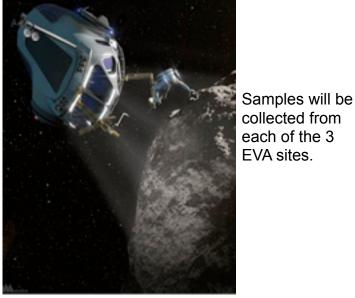
Mobile Science Platforms "Phobots"



Seismic Array with ChipSats

Space Weather Stations

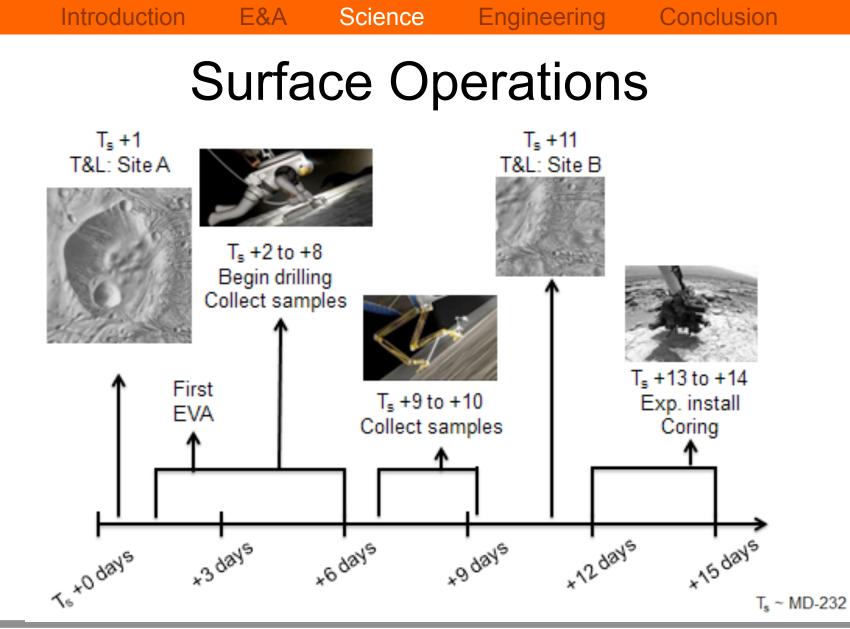
Mass margin left for new instruments based on precursor science results



Team Explorer TAPER

Surface science equipment	Heritage	Qty	Mass (kg)
Sample collection equipment		1	425
Robonauts		2	100
Tongs, rake, dust scooper, hammer, hand lens, documentation camera		1	25
Sample boxes, cores, bags		1	200
Mobile Science Platforms (Typical payload below)		5	10
Raman/LIBS Spectrometer	JPL Raman/LIBS in development	1	3
Multispectral imaging system	Rosetta Landing Imaging System (ROLIS)	1	0.5
Neutron spectometer	Dynamic Albedo of Neutrons (DAN)	1	3
Visible/Near-Infrared Spectrometer	Comet Infrared and Visible Analyzer System (CIVA)	1	0.75
Chasis + communications		1	2.75
Seismic network stations		25	1
Small networks deployed towards landing	JPL in development	5	1
Space weather stations		3	12.5
Plasma Wave System	FPMS		3
Micrometeorite Detector	METEOR		3.5
Dust Particle Detector	DIAMOND		3
Structure + comm system			3
Margin for additional instruments necessary by precursor science			300
Total + 20% margin			1005

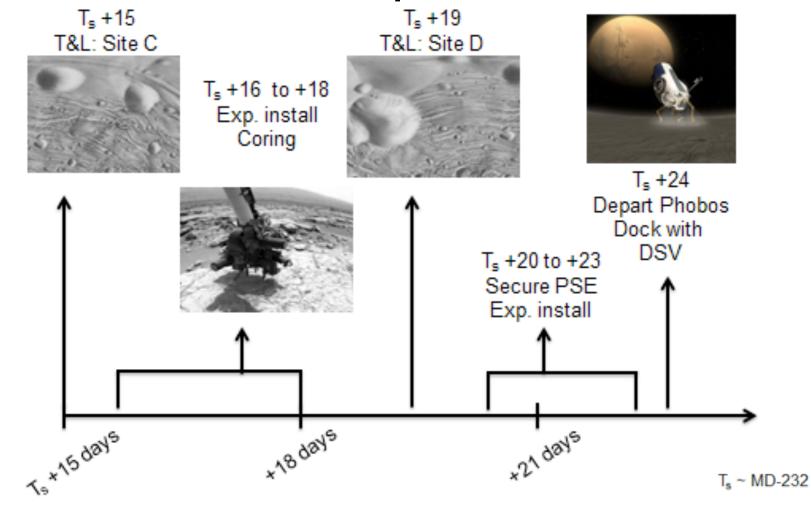
Sample Collection Strategy



(
Ì
;
(
,

	Artists conception of GLACIER, a possible precursor to types of cold storage required for samples possibly
I	for samples possibly
	containing
	volatile material

	Rock samples	Core samples	Soil scoops
Required collected qty per EVA site:	30	10	5
Number of EVA sites:	3	3	3
Minimum mass per single sample (kg):	0.2	1.5	0.1
Total mass (kg) for all samples:	18	45	1.5
Total mass + margin for 10% E/PO, 20% international cooperation, 20% target of opportunity:	27	67.5	2.25



Team Explorer TAPER

Conclusion

Surface Operations

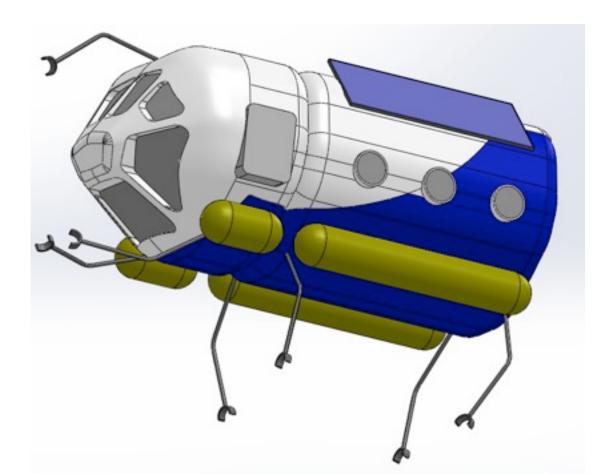
E&A

Science Payload: Additional Science

Orbital Remote Sensing Instruments	Heritage	Mass (kg)	Power (W)
High resolution multispectral imaging	Dawn framing camera	10	20
Radar	Sharad	15	40
Middle energy range particle detector	MARIE	4	7
Low energy range particle detector		2	2
High energy range particle detector		2	2
Cubesats sent to Deimos (x 5)		3	N/A
Dedicated instrument for		10	10
Total + 20% margin		69.6	97.2

Science in Transit

- Compositional and isotopic analysis of samples for triage
- Radiation experiments
 - New-LIFE
 - Dosimeters
 - Additional experiments designed to test the effects of long duration spaceflight on humans are described in section on human factors
- Provide outreach opportunity for the general scientific community to propose experiments and develop instrumentation for observations of Earth as an exoplanet



Engineering

Engineering Requirements

Top Level Requirements derived from Objectives

The crew shall remain safe for the mission duration.

E&A

The crew shall travel to Phobos and return.

The crew shall land on the surface of Phobos

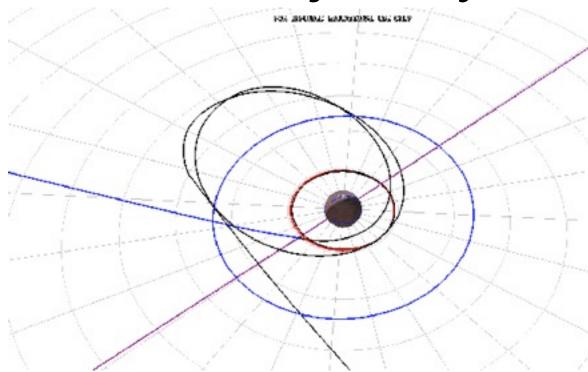
The crew shall obtain samples from Phobos.

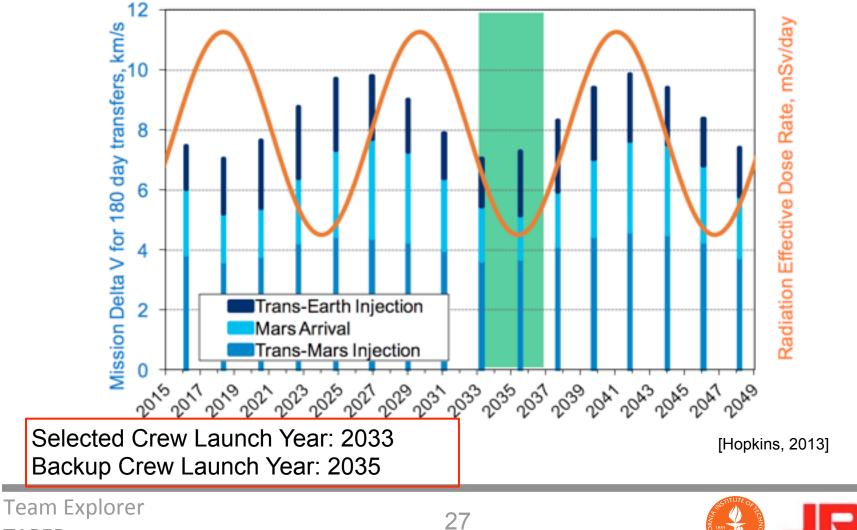
The mission shall satisfy the science goals

The mission shall demonstrate selected technologies

The mission shall comply relevant legal and Planetary Protection requirements.

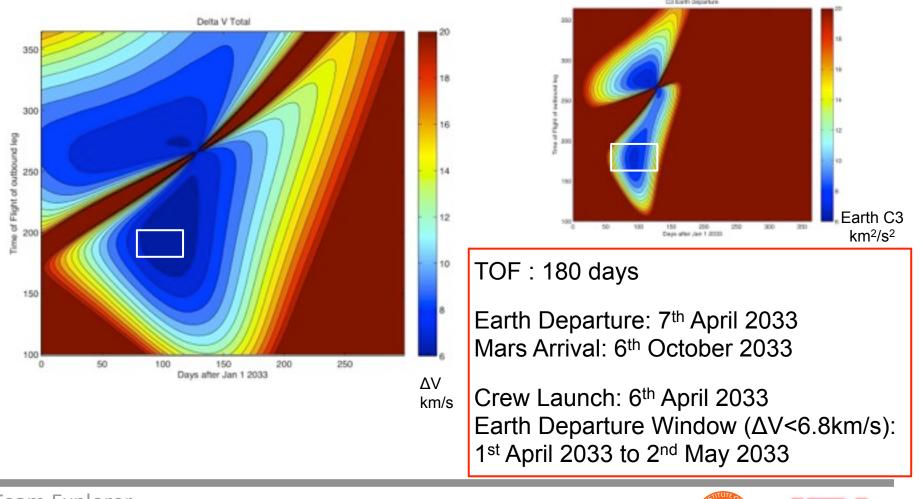
Subsystem level requirements


> Trajectory design, spacecraft design, propulsion system, human factors, power, communications, thermal control, AODCS & GNC



Mission Profile, Launch Dates, and Trajectory

Selection of Crew Launch Year



TAPER

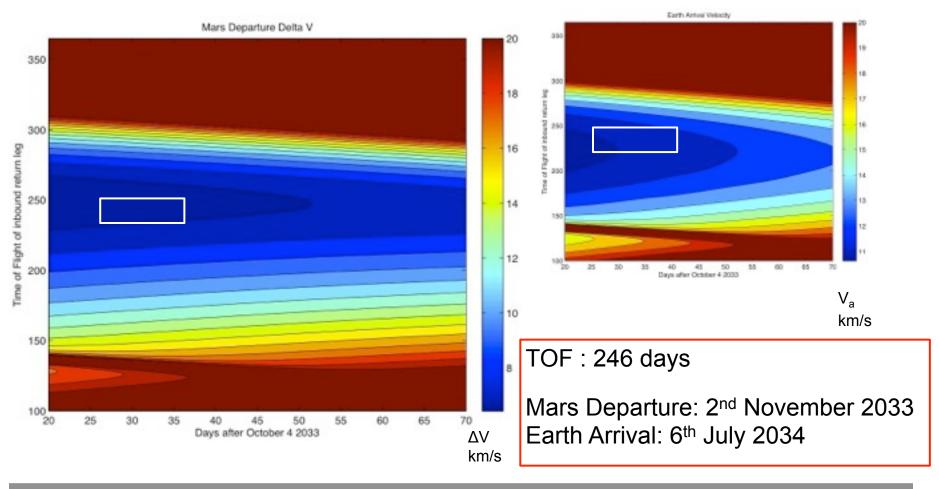
Science

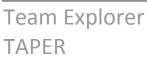
Engineering

Conclusion

Introduction

E&A

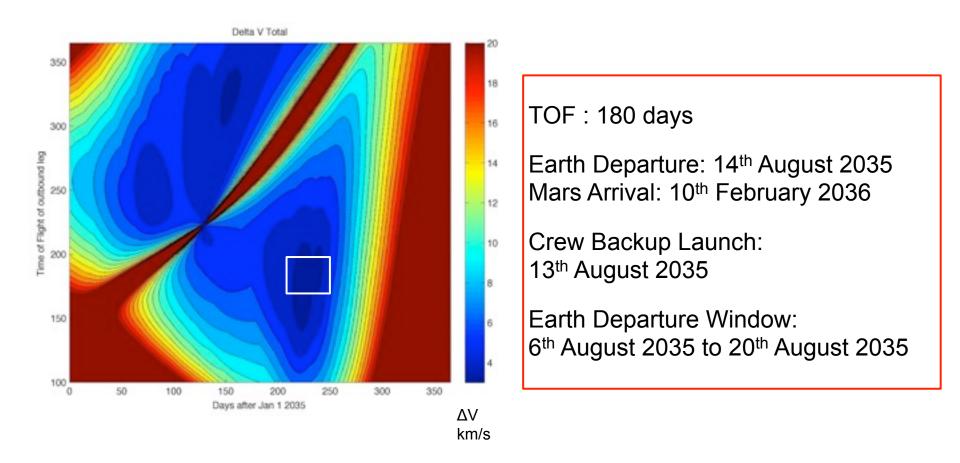



E&A Science

Engineering

Conclusion

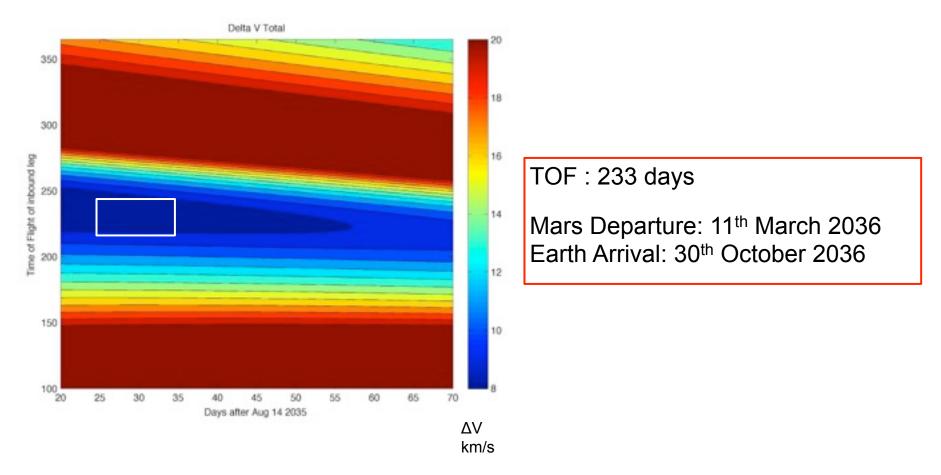
Crew Return Leg (2033 Launch) Mars Departure ∆V



Engineering

Conclusion

2035 Crew Earth Departure Selection of Departure Date and TOF

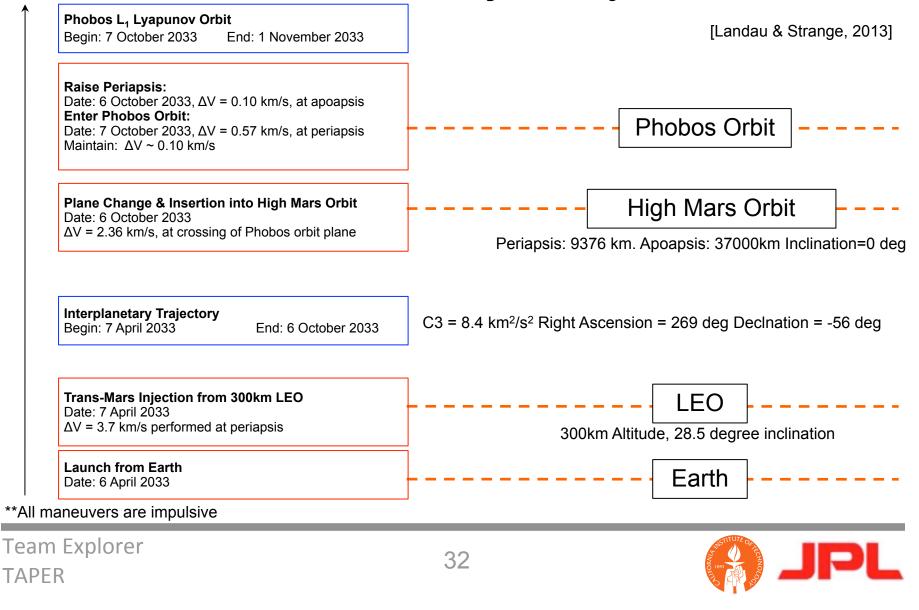

Science

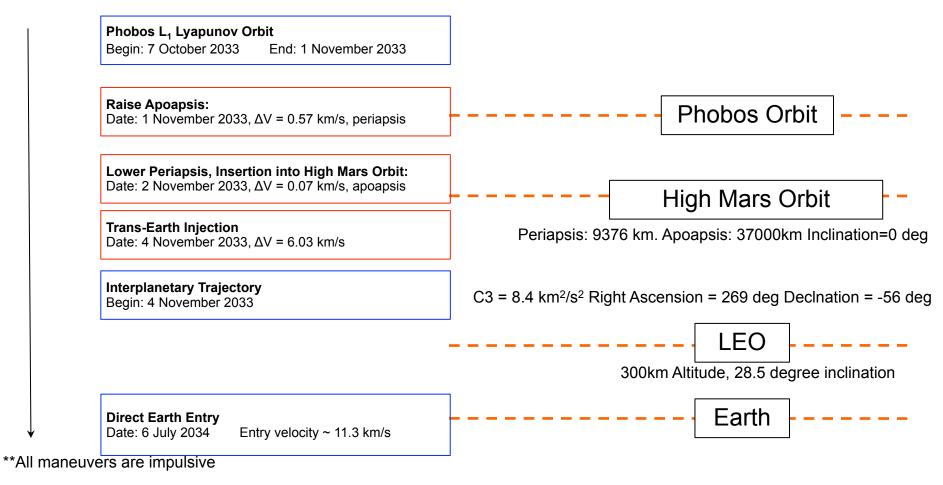
E&A

Engineering

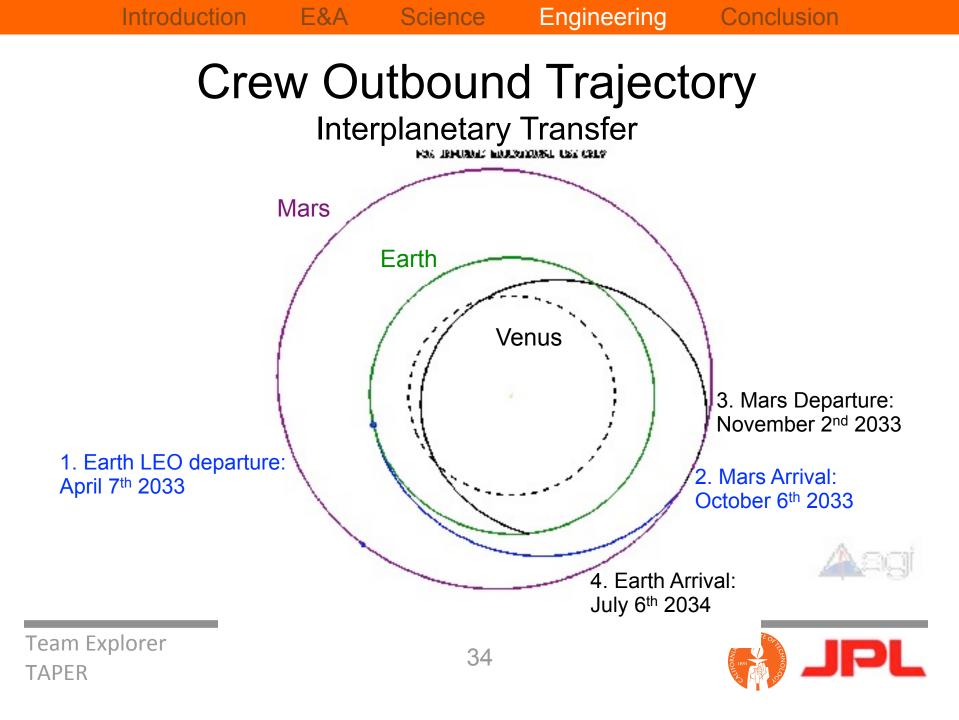
Conclusion

Crew Return Leg (2035 Launch) Mars Departure Delta V

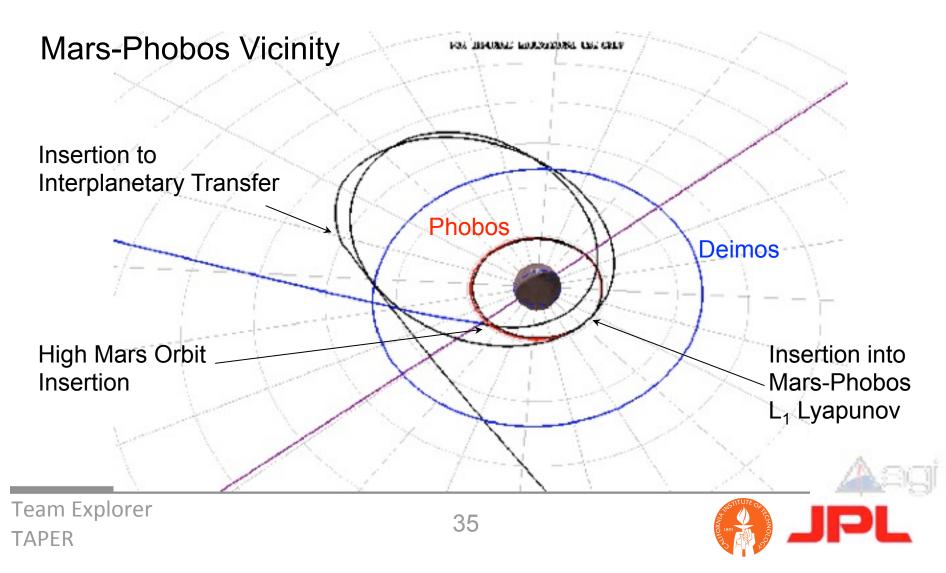


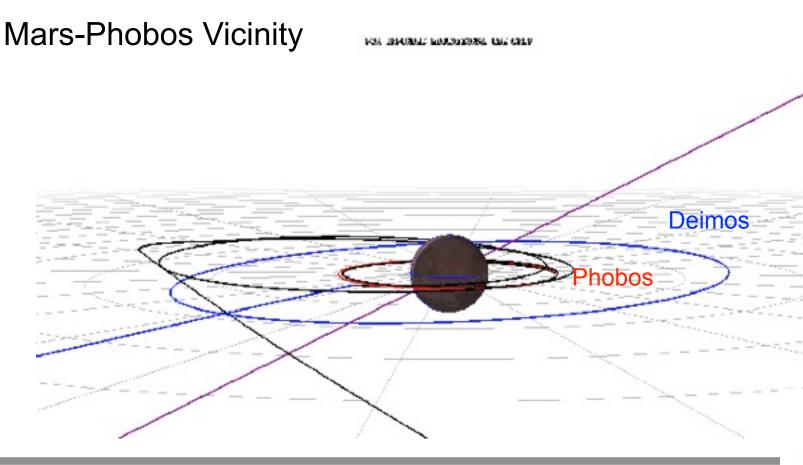

Introduction E&A Science

Crew Outbound Trajectory Overview


Introduction E&A

Crew Inbound Trajectory Overview

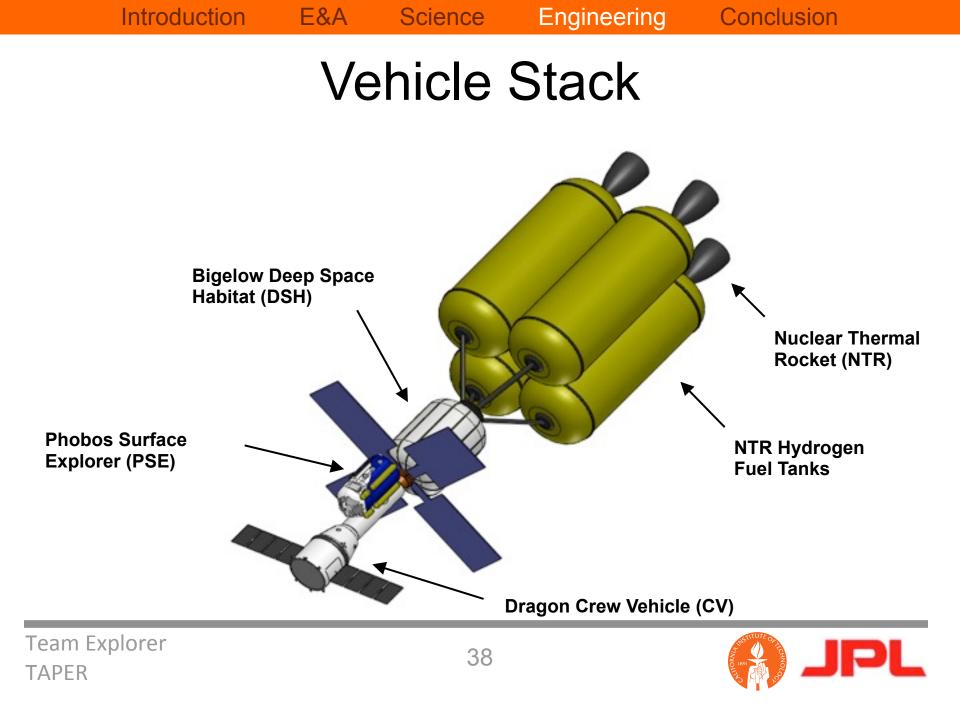

Total Time of Flight: 456 days. Total $\Delta V = 13.5$ km/s


Introduction E&A Science Engineering Conclusion

Crew Outbound Trajectory

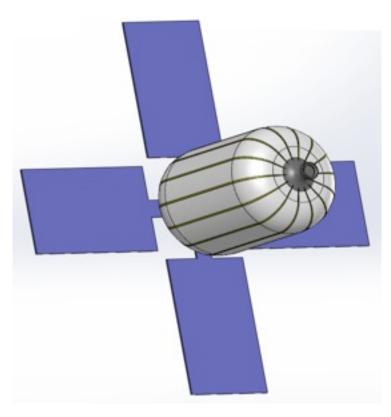
E&A

Crew Outbound Trajectory

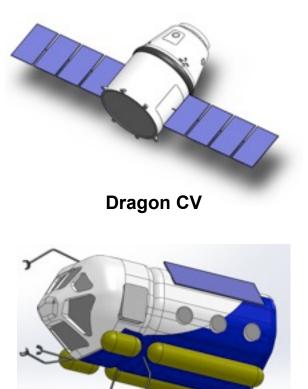

Team Explorer TAPER Introduction E&A Science Engineering Conclusion

Spacecraft Design & Layout

Team Explorer TAPER


Science

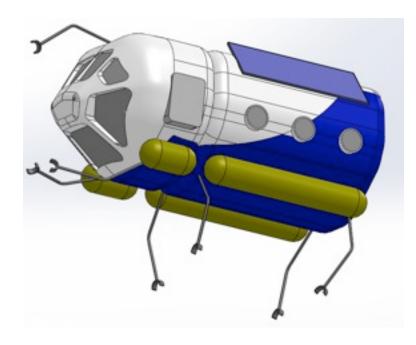
E&A

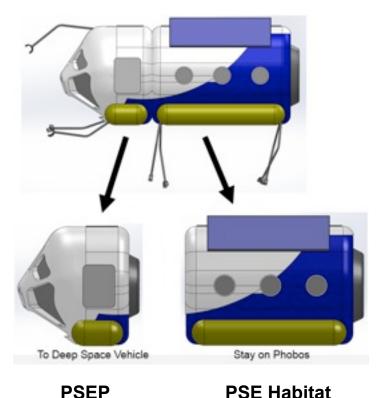

Engineering

Conclusion

Crewed Vehicles

Bigelow DSH




PSE

JPL

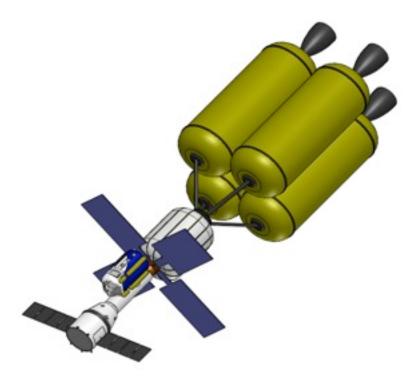
Team Explorer TAPER Introduction E&A Science Engineering Conclusion

PSE - Phobos Surface Explorer

• 2-Stage SEV - Habitable and Ascent

- Wet mass = ~17000 Kg
- Science Instruments = ~1000 Kg

Introduction Science Engineering Conclusion E&A Surface Exploration



Propulsion Systems and Launch Capability Requirements

Science

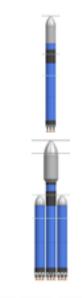
E&A

Engineering

Conclusion

Launch Vehicle Choices

Falcon 9 (1)


- Crew Vehicle (10,100 kg)
- 10,450 kg to LEO
- Cost: \$130-140M

Falcon 9 Heavy (1)

- DSH & PSE (17,000 kg)
- Cost: \$80-125M

SLS (4)

- NTR Tanks and System
 - (246,000 kg over4 launches)
- Cost: \$2.5 billion

Team Explorer TAPER

Mass Budget For Propulsion System Design

		DSH (Outbound)	CV (Outbound)	PSE	PSEP (Ascent)	DSH (Inbound)	CV (Inbound)
Component	Notes						
	Food, Gases for Life Support, Water,						
ECLSS	Tanks, Life Support Hardware	8		2		8	
	Centrifuge, Countermeasure, Excersice,						
	Clinical medicine, rapid prototyper,						
Med	small fridge	1				1	
Crew	Astronauts, clothes	0.6	0.6	0.3	0.3	0.6	0.6
Habitat Structure	Beds, Storage, equipment, structure	10				10	
	Avionics, Power, Environment						
Wet Mass	Protection, Crew systems	6				6	
	Science Equipment for Crew to use						
Science Equipment	to/from Phobos	0.2		1		0.2	
Propulsion System	Engine, Tanks, Propellant	184		3.7	0.9	75.4	
Dragon Capsule			9.5				9.5
Samples	Samples from Phobos				0.5		0.5
Remote Sensing				0.07			
PSE - Hab				6			
PSEP Total				3.7			
PSEP Structure					2		
Total:		209.8	10.1	13.07	3.7	101.2	10.6

4 SLS Launches ~46 tons H2 each Falcon Heavy ~39 tons Falcon 9 ~10.1 tons

Team Explorer TAPER Units: Metric Tons

Propulsion Trade Study (1/2)

Propulsion systems considered:

- Chemical Propulsion: 1995]
- Electric Propulsion: al., 2011]
- Nuclear Propulsion: [Humble, 1995]

LOX/H2, LOX/CH4, N204/MMH [Humble,

Clusters of 50 kW Hall Thrusters [Strange et

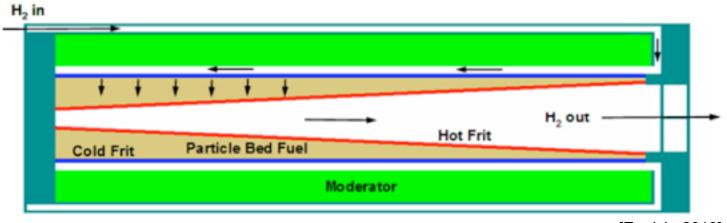
NERVA Variant, Particle Bed Reactors

Considered Multiple Flight and Rendezvous Scenarios, examples to follow

Propulsion Trade Study (2/2)

	Description	IMLEO (Metric tons)	Crew Time of Flight (days)
LEO Rendezvous	a.) NTR DSV departure from LEO	279	456
LEO Rendezvous	b.) Cluster of fourteen 50 kW Hall thrusters DSV departure from LEO	202	1076
HEO Rendezvous	a.) A NTR DSV is placed in HEO by cluster of six 50 kW Hall thrusters which rendezvous with CV and then departs	297	456
Cargo Rendezvous with DSV at Phobos	a.) Cargo pre-placement at Phobos by cluster of six 50 kW Hall thrusters and DSV departure with NTR	276	456
Cargo and Fuel Rendezvous with DSV at Phobos	a.) Cargo and fuel pre-placement at Phobos by cluster of six 50 kW Hall thrusters and DSV departure with NTR	248	456

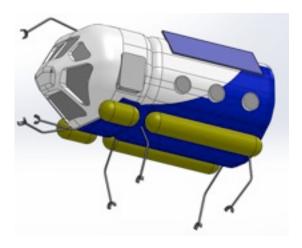
Chosen:


- LEO Rendezvous with Nuclear Thermal Propulsion Reasoning:
 - Time constraints of opposition class mission limit efficiency improvements of EP
 - Small mass of total system which is not necessary for DSV flight (human flight) _____limits efficiency improvements of
 - Risks of fuel pre-placement outweigh by performance improvements

DSV Propulsion Stage

- Assumptions:
 - Zero-boil off for cryogens
 - Sufficient PBR technology
- NTR Particle Bed Reactor type
 - Chosen for high thrust/weight ratio

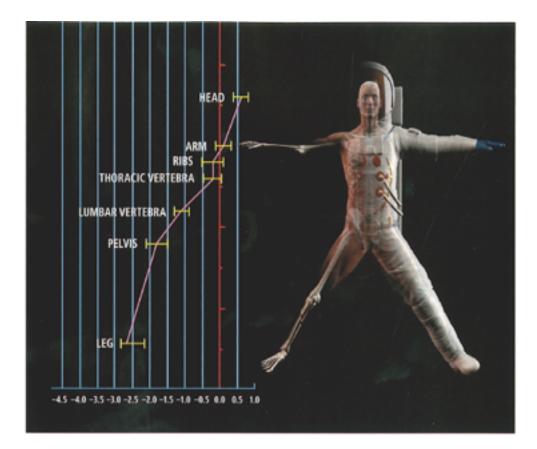
Thrust (N)	ISP (sec)	Engine Dry Mass (tons)	Propellant Mass (tons)	Propellant Tank Mass (tons)	Propellant Tank Volume (m^3)
333000	900	3.925	235.4	10	3440



[Emrich, 2013]

Introduction E&A Science Engineering Conclusion PSE Propulsion Stage

- PSE Descent Engine:
 - LOX/Methane type engine for technology demonstration
 - Small RCS thrusters
 - ISP: 380 sec
- PSEP Engine:
 - N2O4/MMH
 - Reliability and ability to escape Phobos and explore the terrain
 - Based off Draco thrusters
 - ISP: 320 sec

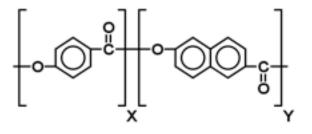


Human Factors

Crew Selection

- Optimal Size of Crew
 - 4 astronauts, in their 40s, mixed gender
 - Roles: Chief commander, Geologist, Engineer, Flight Surgeon
- Physiological Testing
- Psychological Testing
 - Psychiatric Diagnostic & Statistical Manual IV
 - Neuroasthenia
- Genetic Testing
 - HRAD9 Gene Increased Radiation Tolerance
 - Screened for future diseases
- Final Selection
 - Field Tests
 - Self-evaluation

[Seedhouse, 2012] [Pandita, 2006]


E&A Science

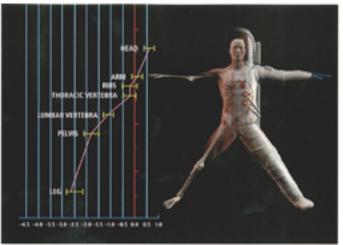
Engineering

Conclusion

Radiation Mitigation

- Dose shall not exceed 3% excess cancer mortality risk
- Assumptions:
 - Safe Haven
 - Shield sleeping quarters; water blanket
 - Five Dosimeter Monitor
- Vectran Material
 - Design thickness to 20 [g/cm²]
- Passive and Active Shielding
- Future Technology Demonstration [Turner, 2013] [Atwell, 2005]
 - Photobioreactor used for algae recycled biomass

E&A Science


Engineering

Conclusion

Physiology in space

- Physiological deconditioning:
 - Bone loss
 - Muscle atrophy
 - Cardiovascular adaptation
 - Motion sickness
- Countermeasures:
 - Exercise: aerobic vs. resistance
 - Artificial gravity: short radius centrifuge
 - IVA wearable concepts:
 - Exoskeleton
 - Gravity Loading Countermeasure Suit

Stirru

(Vico, www.humanspaceflight.esa.int)

(Waldie, 2011)

(ESA, 2011)

Clinical Medicine

- Advanced Research in Space Medicine I & II
 - Highest risk and incidence

E&A

- Medical Packs
- Extend shelf life
- Telemedicine
 - Tablet technology
 - Self-diagnosis
- 3D Metal Printing
 - Aluminum wrappers
- Surgical Suite
 - Inflatable sterile environment
 - Magnetic tray
 - Laminar flow

Psychological Considerations

- Crew Selection
- Interpersonal Conflicts
 - Training on conflict resolution
- Sleep Deprivation
 - Medication
- Boredom

- Tablet Technology: Reading, video games, and skill training
- Outreach activities and science experiments
- Group Compatibility
 - Common Meal
- Pale Blue Dot Syndrome
 - Family Communication
 - Virtual Reality

Science

E&A

Engineering

Conclusion

ECLSS

AIR

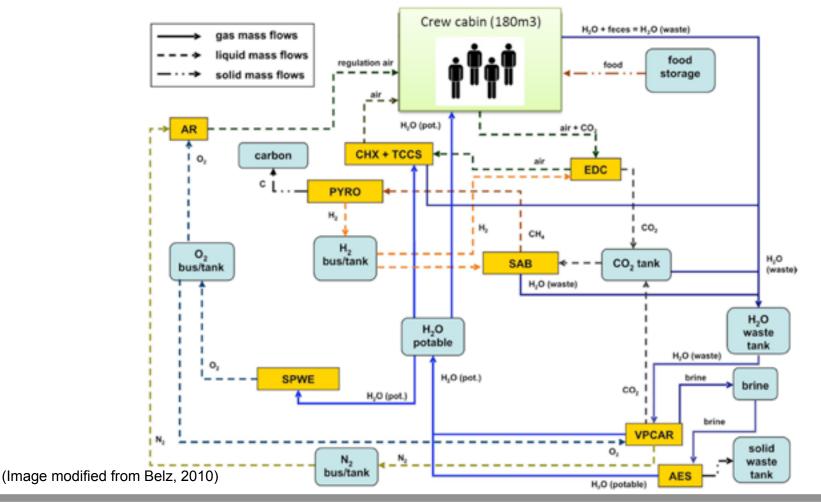
- CO₂ Removal:
 - 2 Electrochemical Depolarized Concentrator (EDC)
- O₂ Generation:
 - 3 Static Feed Water Electrolysis (SFWE)
 - 3 kg/day per unit
- 2 Trace Contaminant Control (TCC)
- Heat Exchangers (CHX)

WATER

- Regeneration by 2 VPCAR units
 - Waste water into potable water
 - 250 kg/day per unit
- Air Evaporator System (AES)
 - Recover residual H₂O

FOOD

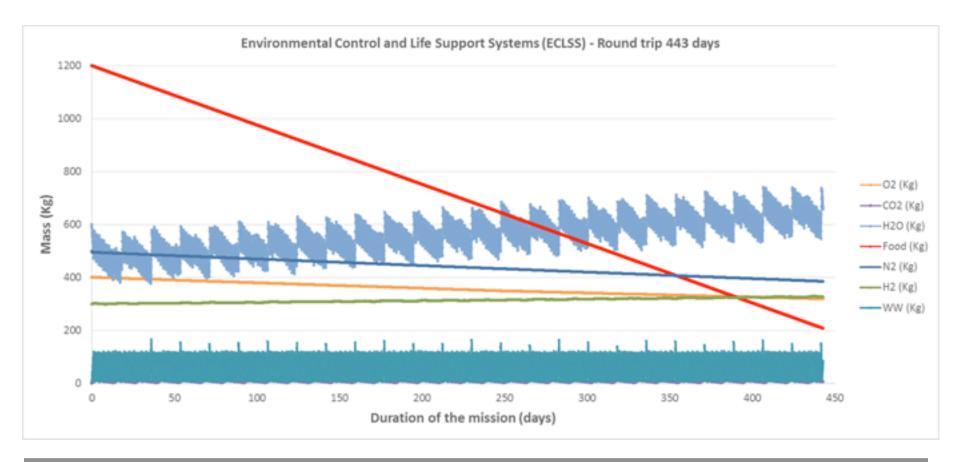
- 1200 kg of dehydrated food
 - Maximum intake per person = 0.56 kg/d


WASTE MANAGEMENT

- CO₂ Reduction: 2 Sabatier Reactors
 - $CO_2 + 4H_2 \rightarrow CH_4 + 2H_2O$
- CH₄ Reduction: 2 Pyrolysis units
 - CH₄ into C and H₂

Introduction E&A Science

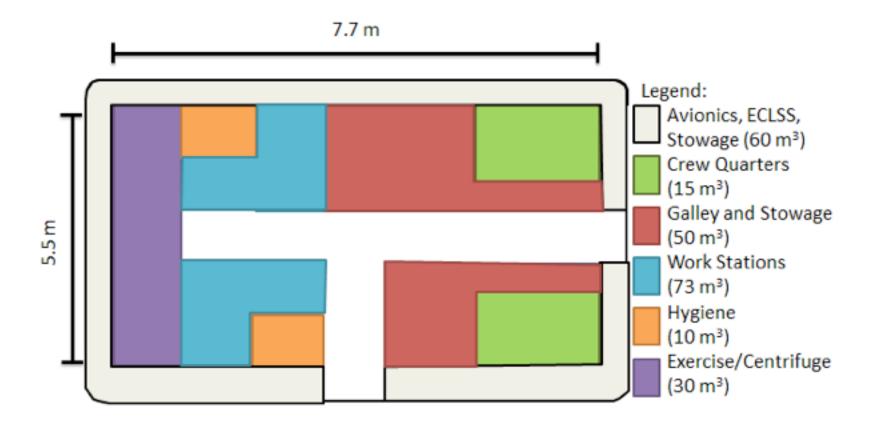
ECLSS Architecture

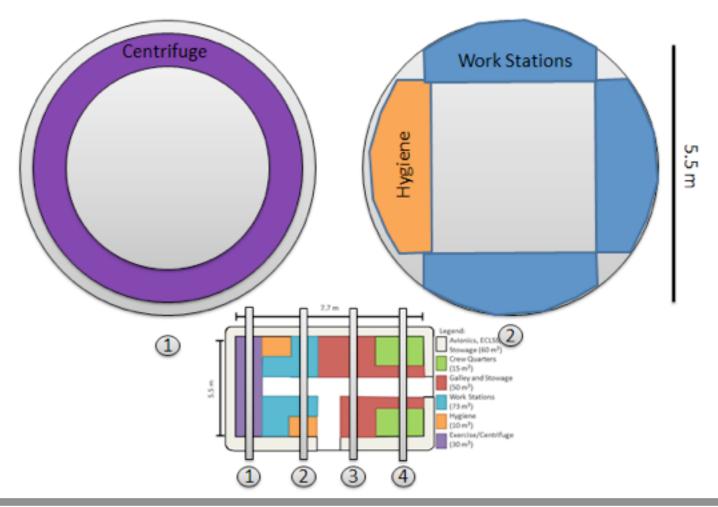


Team Explorer TAPER

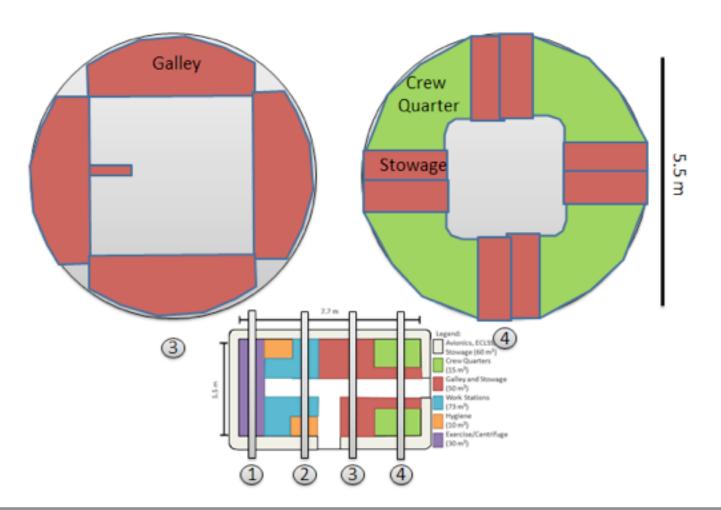
Conclusion

Deep Space Habitat ECLSS

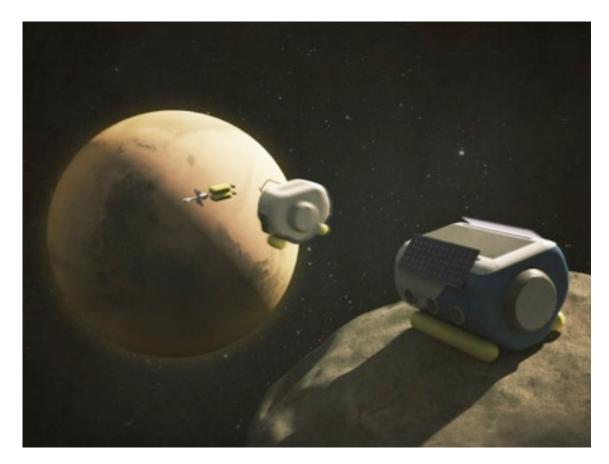




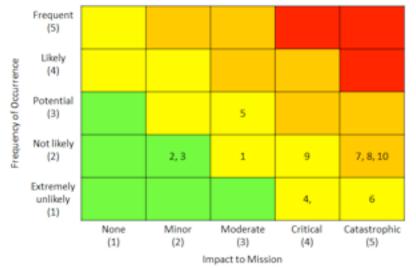
Science


E&A

Conclusion



Conclusion


E&A Science

Engineering

Conclusion

Conclusions

- Our approach:
 - Stepping stone to Mars
 - Global context
- Risks are high for Mars missions
- ...but gains are greater
- (So long as the gains are well-communicated)

System Risk Assessment

Ending Quote

"Ever since there have been people, there have been explorers, looking in places where other hadn't been before. Not everyone does it, but we are part of a species where some members of the species do—to the benefit of us all." -Neil de Grasse Tyson

References

APA, Diagnostic and Statistical Manual of Mental Disorders. Association, 1994.

B. Clement, Fundamentals of Space Medicine. Springer, France, 2005.

B. Comet, Advanced Research in Space Medicine I and II for exploratory manned space missions. ISU-Strasbourg.

D. Lugg, Current international human factors research in Antarctica, A. A. Harrison, Y. A. Clearwater, and C. P. McKay, Eds. Springer-Verlag, New York, 1991.

E. Seedhouse, Interplanetary Outpost. Chichester, Springer, 2012.

Http://www.extremetech.com/extreme/143552-3d-printing-with-metal-the-final-frontier-of-additive-manufacturing.

Http://www.vectranfiber.com/BrochureProductInformation/MolecularStructure.aspx.

H. M. Frost, "Why do marathon runners have less bone weight than weight lifters? avital-biomechanical view and explanation," Bone, vol. 20.

J. C. Buckey, Space Physiology. Oxford University Press, 2006.

J. Stuster, Group Interaction. Naval Institute Press, Annapolis, MD, USA, 1996.

J. Waldie and D. Newman, "A gravity loading countermeasure skinsuit," Acta Astronautica, vol. 68, pp. 722–730, 2011.

L. Putcha and P. W. Taylor, "Biopharmaceutical challenges of therapeutics in space: formulation and packaging considerations," Therapeutic Delivery, vol. 2, pp. 1373–1376, 2011. American Psychiatric 55

M. Pavone, J. C. Castillo-Rogez, and J. A. Hoffman, "Spacecraft / rover hybrids for the exploration of small solar system bodies," Final Report - NASA NIAC Phase I Study, 2012.

R. Bacabac, J. Van Loon, J. Klein-Nulend. Our sensitive skeleton. Special Report: Bone Loss, www.spaceflight.int.

R. Turner, Radiation Risks and Challenges Associated with Human Missions to Phobos/Deimos. Presented at the Caltech Space Challenge 2013.

V. Marwaha, "A current understanding of the various factors of bone loss incorporated into the development of the gravity loading countermeasure skinsuit (glcs)," MSc. Thesis, 2010.

Rucker, Michelle A. and Thompson Ph.D., Shelby.. "Developing a Habitat for Long Duration, Deep Space Missions, Global Exploration Conference, Washington, D.C., 2012.

"Human Integration Design Handbook (HIDH)", NASA/SP-2010-3407, 27 Jan 2010.

S. Belz et al. "Synergetic Hubrid Life Support System for a Mars Transfer Vehicle", 61st International Astronautical Congress, Prague, 2010.

D. Landau and N. Strange, "Trajectory Design Techniques for Human Missions to Mars", Presented at the Caltech Space Challenge 2013

Acknowledgements

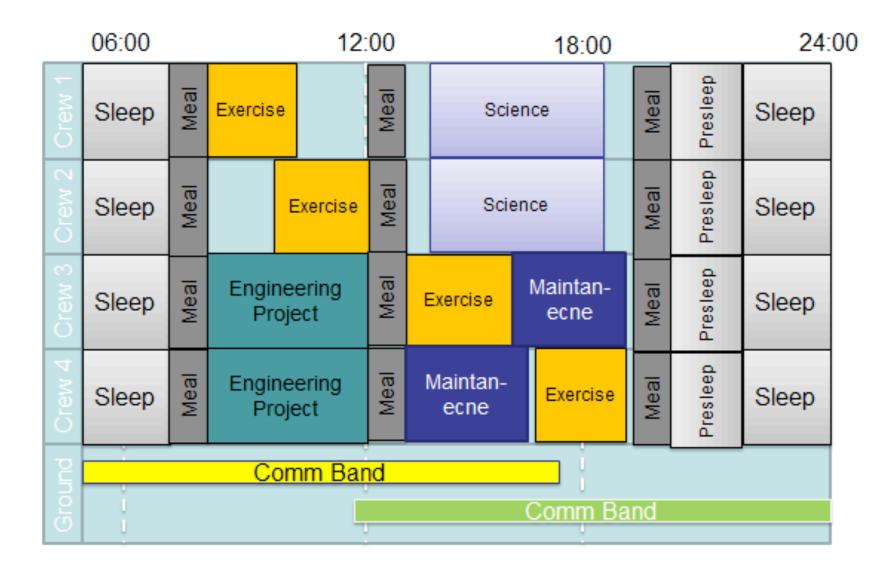
E&A

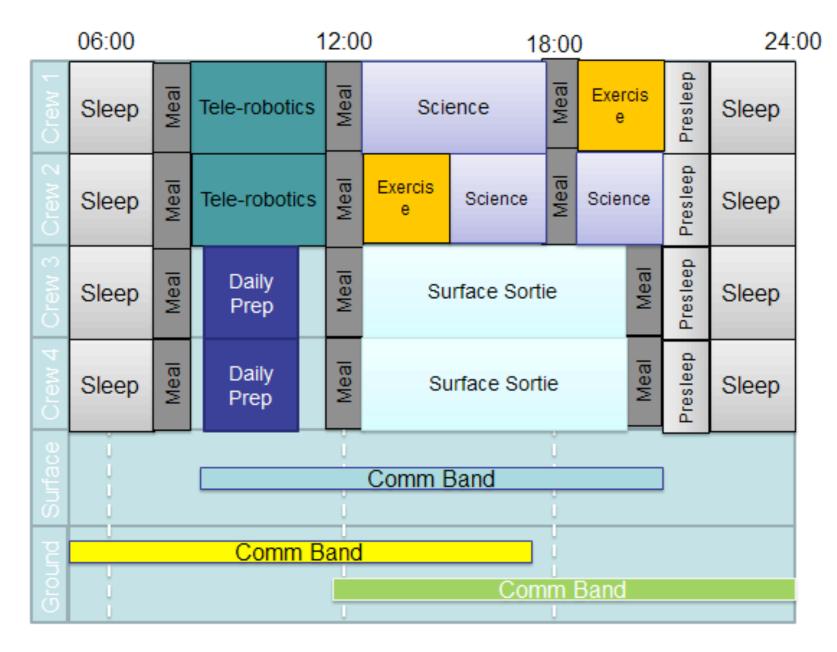
Our speakers and mentors: Dan Mazanek, Ron Turner, Nigel Angold, Damon Landau, Nathan Strange, Julie Castillo-Rogez, Josh Hopkins, Aline Zimmer, Paul Abell, Richard Zurek, Kelley Case, Andrew Klesh

Judges: Joe Parrish, Guillaume Blanquart, Rolf Danner, Detao Du, Louis Friedman, Jackie Gish, Beverley McKeon, Mark Pieczynski, Tom Prince, Garrett Reisman, Joe Shepherd, Nick Smith, Jakob van Zyl

CSC organizers: Dimity Nelson, Jason Rabinovitch, Nick Parziale, Jonathan Mihaly

Also: John Steeves, Heather Duckworth

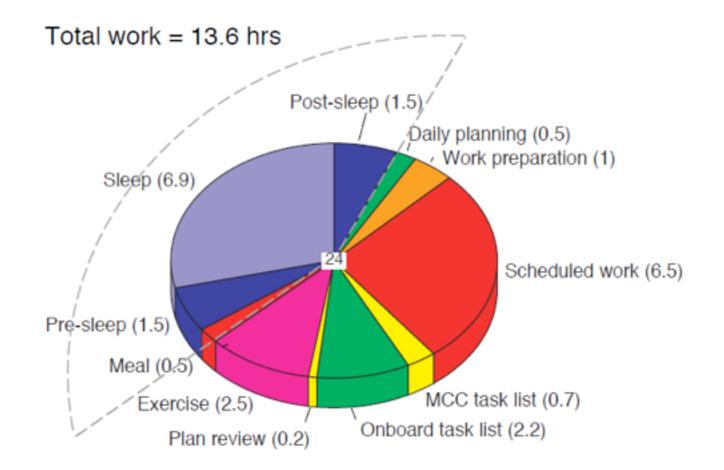




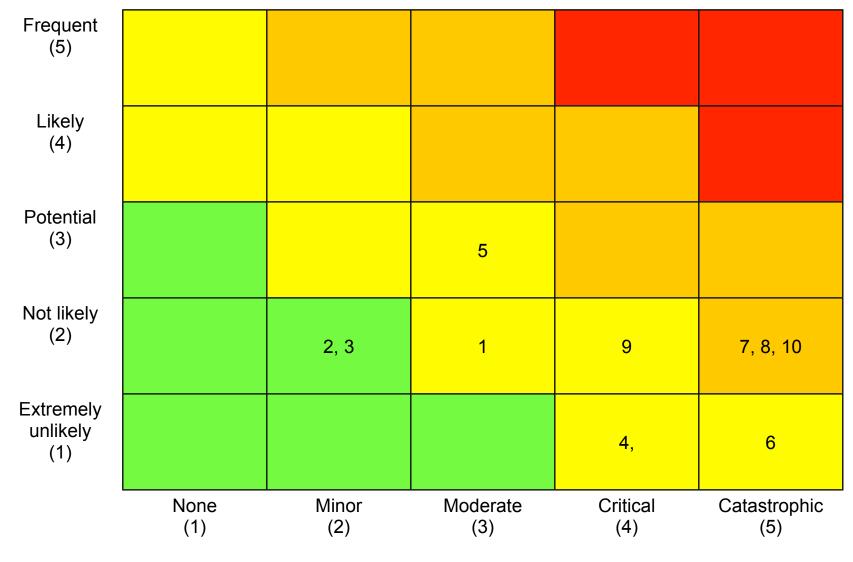
Backup Slides

Example of Inbound/Outbound Daily Activities Crew Timeline

Surface Ops



	Volume [m ³]	Qty.	Subtotal [m ³]
Crew Quarters	5	4	20
Galley, Locker Access,			
Operations	50	1	50
Science workstations	35	2	70
Hygiene and waste			
management	5	2	10
Centrifuge/exercise	30	1	30
Translation paths	2.5	3	7.5
Total Volume	180		



	Risk and Mitigation Strategy	Impact	Prob.	
Risk	Loss of sample containment	3	2	6
Strategy	System redundancy / multiple samples	3	2	0
Risk	Phobots miss	2	2	4
Strategy	Ensuring criteria for release	2	2	7
Risk	Rover mobility failure	2	2	4
Strategy	Robotic exploration capabilities	2	2	7
Risk	Imperfect trajectory maneuvers	4	1	4
Strategy	Ensuring sufficient margin in course planning	7	I	4
Risk	Radiation and microgravity impacts on crew (chronic)	3	3	9
Strategy	Shielding and countermeasures	5	5	3
Risk	ECLSS failure	5	1	5
Strategy	Redundancy	5	1	5
Risk	Decompression sickness / EVA failures	5	2	10
Strategy	Proper EVA protocol	5	2	10
Risk	Medical emergencies	5	2	10
Strategy	Crew training, medical supplies, and surgical suite	5	2	10
Risk	Failed in space rendezvous (Earth proximity)	4	2	8
Strategy	Abort capabilities to earth	4	2	0
Risk	Structural failure of crew habitat	5	2	10
Strategy	Prior demonstration of technology and testing	5	2	10

	1	2	3	4	5
Impact on Mission	None	Minor	Moderate	Critical	Catastrophic
	No impact, No fix required	Minor impact, Fix required	Moderate impact, Fix required	Loss of Mission Objective	Loss of Vehicle or Crew Member
Probability of Occurrence	Extremely Unlikely	Seldom / Not Likely	Occasional / Potential	Likely	Frequent

Risk Matrix

Impact to Mission

74